Erosion control information? The most effective way of minimizing erosion is to guarantee a permanent surface cover on the soil surface, such as trees, pasture, or meadow. However, compared to original forest soils, soils in pasture fields and croplands have less capacity to hold up and are more susceptible to erosion. These soils also have less capacity to absorb water, which makes flooding (and its economic, social, and environmental impacts) more common. The increasingly high demand of a growing population for commodities such as coffee, soybean, palm oil or wheat is clearing land for agriculture. Unfortunately, clearing autochthonous trees and replacing them with new tree crops that don’t necessarily hold onto the soil increases the risks of soil erosion. With time, as topsoil (the most nutrient-rich part of the soil) is lost, putting agriculture under threat.
Water is nature’s most versatile tool. For example, take rain on a frigid day. The water pools in cracks and crevices. Then, at night, the temperature drops and the water expands as it turns to ice, splitting the rock like a sledgehammer to a wedge. The next day, under the beating sun, the ice melts and trickles the cracked fragments away. Repeated swings in temperature can also weaken and eventually fragment rock, which expands when hot and shrinks when cold. Such pulsing slowly turns stones in the arid desert to sand. Likewise, constant cycles from wet to dry will crumble clay.
The abrasive action of sand and pebbles washed against shorelines is probably the most significant wave erosional activity. Particles are dragged back and forth by wave action, abrading the bedrock along the coast and abrading each other, gradually wearing pebbles into sand. Wave erosion creates retrograde, or retreating, shorelines with sea cliffs, wave-cut benches at the base of the sea cliffs, and sea arches—curved or rectangularly shaped archways that result from different rates of erosion due to varied bedrock resistance. Besides the back-and-forth transportation of materials by wave action, sediments are transported by the lateral movement of waves after they wash ashore (beach drifting) or by shallow-water transport just offshore, known as longshore currents. These transportational movements lead to deposition and the formation of prograde, or advancing, shorelines, bars, spits, bayhead beaches (a bayhead beach is formed between two headlands), and barrier beaches (a barrier beach parallels the shore). Find extra details on https://ippio.com/what-is-erosion-a-comprehensive-guide-to-study-erosion/ guide.
Soil erosion by water is linked to desertification processes. Its severity is prone to increase as a consequence of changes in the amount of precipitation as well as in its temporal and spatial distribution under prospective climate scenarios (IPCC 2014a). This will exert further pressure on ecosystems water balance and calls thus for adequate soil protection and conservation practices in the framework of ecosystems management (Coutinho and Antunes 2006; Jones et al. 2011; Panagos et al. 2015b, 2015c; Anaya-Romero et al. 2016; Seidl et al. 2016).
Erosion is a top concern for construction sites around the world. In addition to posing a threat to the environment, erosion can pollute surrounding rivers and bodies of water, putting both wildlife and human health at risk. That being said, there is a high need for erosion control measures for construction sites. As a manager in your business, it’s important for you to be prepared to adequately prevent erosion in your area.